Volatilization of pesticides from the bare soil surface: evaluation of the humidity effect.

نویسندگان

  • Martina Schneider
  • Satoshi Endo
  • Kai-Uwe Goss
چکیده

Volatilization of pesticides from soils under dry conditions (water content below the permanent wilting point) can be significantly influenced by sorption to hydrated mineral surfaces. This sorption process strongly depends on the water activity, expressed as equilibrium relative humidity in the pore space of the soil, and on the available surface area of the hydrated minerals. In this study, the influence of different humidity regimes on the volatilization of two pesticides (triallate and trifluralin) was demonstrated with a bench-scale wind tunnel system that allowed the establishment of well controlled humidity conditions within the soil. In the experiment starting with very dry conditions, increasing the relative humidity in the adjacent air from 60 to 85% resulted in an up to 8 times higher volatilization rate of the pesticides. An additional strong increase in volatilization (up to 3 times higher) was caused by a simulated rain event, which eliminates all sorption sites associated to mineral surfaces. In agreement with this interpretation, the comparison of two soils suggested that mineral surface area was the soil property that governs the volatilization under dry conditions, whereas soil organic matter was the controlling variable under wet conditions. In contrast to expectations, the use of a novel capsulated suspension for triallate showed the same humidity effects and no substantially lower volatilization rates in comparison to the regular formulation. This study demonstrated that humidity effects on pesticide volatilization can be interpreted via the mechanism of sorption to mineral surfaces under dry conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring herbicide volatilization from bare soil.

A field experiment was conducted to measure surface dissipation and volatilization of the herbicide triallate after application to bare soil using micrometeorological, chamber, and soil-loss methods. The volatilization rate was measured continuously for 6.5 days and the range in the daily peak values for the integrated horizontal flux method was from 32.4 (day 5) to 235.2 g ha(-1) d(-1) (day 1)...

متن کامل

Organic Chemicals in the Environment Effect of Starch Encapsulation and Temperature on Volatilization of Atrazine and Alachlor

Volatilization of agricultural chemicals is one process whereby chemicals may enter into parts of the environment where they were not intended. Starch encapsulation of pesticides has been proposed as a way of modifying pesticide behavior in the soil environment. This study was conducted to assess how starch encapsulation and temperature affect volatilization of atrazine [6.chloro-N-ethyI-N’-(l-...

متن کامل

Effect of Starch Encapsulation and Temperature on Volatilization ofAtrazine and Alachlor

Volatilization of agricultural chemicals is one process whereby chemicals may enter into parts of the environment where they were not intended. Starch encapsulation of pesticides has been proposed as a way of modifying pesticide behavior in the soil environment. This study was conducted to assess how starch encapsulation and temperature affect volatilization of atrazine [6.chloro-N-ethyI-N’-(l-...

متن کامل

Remote sensing for urban heat and cool islands evaluation in semi-arid areas

Cities are experiencing rapid population growth and consequently extensive urbanization. Land-use/land-cover change is one of the important elements worldwide, which significantly affect the environment. This study aims to describe the emergence of urban heat and cool islands as a result of changes in land-use/land-cover. Land surface temperature over a 32-year period in Isfahan city, Iran was ...

متن کامل

Effects of soil moisture on the diurnal pattern of pesticide emission: Comparison of simulations with field measurements

Pesticide volatilization from agricultural soils is one of the main pathways in which pesticides are dispersed in the environment and affects ecosystems including human welfare. Thus, it is necessary to have accurate knowledge of the various physical and chemical mechanisms that affect volatilization rates from field soils. A verification of the influence of soil moisture modeling on the simula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2013